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Abstract

The acoustically controlled heat transfer enhancement of a ferromagnetic fluid in an external magnetic field is
studied in this paper. The analytical expression for the effective thermal diffusivity is obtained. The numerical analysis
and experimental results are discussed. Published by Elsevier Science Ltd.
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1. Introduction

The heat transfer characteristics of a ferromagnetic
fluid are of interest in many branches of science and
engineering [1,2]. The enhanced-heat conduction in a
ferromagnetic fluid may be effectively controlled by a
magnetic field [3-5]. So far, attempts to study the heat
transfer of ferromagnetic fluid have been limited only to
the method by magnet control. It is well known from the
investigations of Kurzweg and his coworkers [6-8],
Nishio et al. [9] and Gau et al. [10] that heat transfer
of a fluid can be enhanced by the fluid oscillating or
reciprocating inside a tube.

It is the purpose of this paper to study the acousti-
cally controlled heat transfer of a ferromagnetic fluid in
a steady magnetic field. The technique is of the great
application potential, e.g. the thermoacoustic heat-
transport tube may be made by using the technique, the
acoustically controlled ferromagnetic fluid can act as the
working fluid of a liquid-sodium thermoacoustic engine
or a heat-exchanger in a magnetic refrigerator, and so
on.

In this paper, the “Oscillation-enhanced heat trans-
fer” of a ferromagnetic fluid in an external magnetic
field is examined. The analytical expression for the ef-
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fective thermal diffusivity is investigated. The numerical
analysis and the experimental results are discussed.

In this paper, we assume that: (1) the radial gradient
of the pressure is neglected throughout the tube; (2) in a
quiescent acoustic field, the time average of the oscil-
lating velocity equals to zero and the time average of the
pressure is a constant; (3) the magnetization is aligned
with the magnetic field.

2. Experimental apparatus

Fig. 1 depicts a schematic diagram of the experi-
mental apparatus used in our study. The test section is
a horizontal tube made of acrylic resin. The horizontal
tube inner radius is 10 mm and length is 150 mm. The
copper tubes whose thickness is 0.5 mm with the same
inner radius are mounted at the ends of the acrylic
resin tube. The copper tube at the right side is heated
uniformly by an electric resistance wire. The wire is
treated with insulation paint. The heat flow can be
calculated from the corresponding electric power. A
Helmbholtz coil is employed to generate an axial exter-
nal magnetic field. The temperatures at the hot and
cold ends were measured by copper-constantan ther-
mocouples having wire diameter of 0.1 mm. A pressure
wave generator generates an acoustic field, which pro-
duces one-dimensional laminar sinusoidal oscillations
of the fluid. The sample is a petroleum-based ferro-
magnetic fluid in the tube.
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Nomenclature T temperature
To mean temperature
¢ heat capacity Th, Te temperatures at hot and cold ends
o viscous dissipation function AT temperature difference
fu thermal dissipation function u velocity
g(r) temperature distribution function Uy maximum axial velocity
&, & real and imaginary part of the g(r) u(r) velocity distribution function
H, external magnetic field Uy, U real and imaginary part of the u(r)
H, demagnetizing field z axial coordinate
i vas) Az tidal displacement
Jo Bessel function of first kind of order zero o thermal diffusivity, k/pyc
k thermal conductivity A non-dimensional thermal diffusivity
ki effective pyromagnetic coefficient T, viscosity relaxation time, 72/2v
k. effective thermal diffusivity Ty thermal relaxation time, r(z) /20
/ tube length Lo permeability of free space
M magnetization Y axial temperature gradient
P pressure n viscosity
Pr Prandtl number, v/a Do mean density
r radial coordinate v kinematic viscosity, n/p,
70 tube radius 0 phase shift between pressure and velocity
t time 2 susceptibility
ty Vo, w angular frequency
t, NG o complex angular frequency
6 7 r Y
4 P cold . H, hot
1 2 F Y
| = fO
3 —H p— >z
8 9 10 11
12 -1/2 0 i/2

Fig. 1. A schematic diagram of the experimental apparatus: 1.
cold copper tube; 2. hot copper tube heated by the electric re-
sistance wire treated with insulation paint; 3. pressure wave
generator; 4, 5. Helmholtz coil; 6, 7. copper—constantan ther-
mocouples; 8. “Durkee” heat insulation layer; 9. acrylic resin
tube; 10. ferromagnetic fluid; 11. flexible membrane; 12. D.C.
generator connected by the electric resistance wire.

3. Theoretical analysis

As shown in Fig. 2, we study the heat transport
phenomena of incompressible oscillating flow of a fer-
romagnetic fluid in the presence of an axial external
magnetic field H.. A constant axial temperature gradient
y = (T, — T.)/! is superimposed on the fluid, where 7,
and T, are the temperatures of the hot and cold ends at

Fig. 2. Geometry used for analysis.

z=1/2 and z = —1/2, respectively, with / being the
channel length.

A velocity oscillating induces a temperature oscillat-
ing and the temperature oscillating induces a magnetic
oscillating, so the magnetic field within the ferromag-
netic fluid is related to the velocity oscillating. In the
presence of an external field ., the internal field is [11]

H=H,+H, (1)

where A, is the demagnetizing field. The magnetic field is
linearized about velocity oscillating u by the expression
[12,13]

iy = fho + i 2)
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with

=+ 22 )a
1+y/)"

where Hj, is regarded as a constant and ﬁlo + Hyii is the
corresponding value of the Hy atz=0, x and k; are the
susceptibility and the effective pyromagnetic coefficient,
respectively, H', which is assumed to be small in com-
parison to Hj, is the magnetic disturbance induced by
the velocity oscillation. Hy and H;y may be found by the
molecular field theory or by the method of identification
of system.

The interaction between the field and the magneti-
zation yields a body force called Kelvin force [12]
Jm = Uo(M - V)H, on the fluid. When M and H are both
acting along the z-axis direction, the Kelvin force be-
comes fy, = uyM(0H /0z).

The linear governing equations of the first-order
acoustic quantities such as velocity and temperature of
the fluid are given as following:

du/ op' OH' )

— M, u 3
Pog, =, T HeMo— -V, 3)

or dH’ ,

por:( 5 ) — o Toky — - = kV°T 4)
with boundary conditions:
r=r, u=0 T =0, (5)
where Ty = (T4 +7.)/2 is the mean temperature,

My = y(H. + H)o) is the magnetization corresponding to
the magnetic field H. + Hio, u,p, T, 1, ¢, k, py, iy are the
velocity, the pressure, the temperature, the viscosity, the
heat capacity, the thermal conductivity, the mean den-
sity and the permeability of free space, respectively. The
sign “” denotes the wave quantities. Here, the first kind
boundary condition 77 = 0 at » = r is imposed on the
tube wall [14]. The fluid properties, 7, ¢, k, p,, are taken
as constants in this paper.

The flow is assumed to be entirely in the z-direction,
and the pressure gradient can be found by using the
approximation

a /

i mt+0) 6
5 = he (6)

Eq. (6) is proposed by Watson [15], where 0 is a phase
shift between the pressure and the velocity, p, is related
to not only the magnitude but also the phase angle of
velocity oscillation (refer to following Egs. (8) and (14)).
Eq. (6) gives rise to a velocity distribution

u' = u(r)e”. (7

Substituting Eqgs. (2), (6) and (7) into the momentum
equation (3) yields

10 ( du(r) o poe”
(e (5)] o -5 w
with
kiyuoMo .
o =w— "1, 9
(I+ 2P0 ®)

where v = 15/p, is the kinematic viscosity and «' is the
complex angular frequency, respectively.

Considering a transformation on the dependent
variable from u(r) to f,(r), we express the distribution of
velocity in the cross-section of the flow channel as

u(r) =uo(1 - f,), (10)

where 1, is the maximum centerline velocity and f; is the
viscous dissipation function, respectively. A more con-
venient form for u(r) can be obtained by using the tidal
displacement Az instead of the maximum axial velocity
uy in the Eq. (10). For the sinusoidal oscillations (e')
considered here, we have [7]

Az = (2up/w)[1 - f,] (11)
with
f:nro/ So(r)rdr,

where the vertical bars representing the absolute value.
Substituting Eq. (10) into Eq. (8) gives

10 /0, iw Cpe
uov{;a <ra) ,74 + i0uq. (12)

Po

This equation should be satisfied independently of
transverse location r and kinematic viscosity v, we
therefore have

of, i
r@r( ar) v /=0 (13)
and
—p:T—O—mo uy = 0. (14)

Eq. (14) is a very close approximation to Eq. (8) at the
entrance of the system (when the viscosity is ignored). It
gives the relation between py and wuy.

Solving Eq. (13) under the boundary condition
fo(ro) = 1 yields

P _D[li— DVt (r/r)]
S CEINCET
where 1, = rg /2v is the viscosity relaxation time and

Jo the Bessel function of first kind of order zero, re-
spectively.

(15)
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Substituting Egs. (10) and (15) into Eq. (7) gives

, Jo [(1 — 1)\/a)/r‘,(r/r0)] »

u=uy|l— - e'“.
Jo[(i—1)va'r,]

The instantaneous temperature distribution 7' can
assume the locally form

(16)

T="Ty+yz4 T =Ty + [z + g(r)e”] (17)
with
T/ — yg(r)eiwt. (18)

Eq. (18) is proposed by Kurzweg and his coworkers [6,8].
Substituting Egs. (2) and (18) into Eq. (4) yields the
simplified form of the temperature equation:

10 ag(r) o) _ 1 ia)NOT()Hok]
ror (r or o gr) = at vk u(),
(19)
where o = k/(pyc) is the thermal diffusivity of the fluid.
In Eq. (19), we have neglected the second-order wave

quantity and assumed k;p/ < (1 + y)Hp. Solution of
Eq. (19) is

(=B f) )

(20)
with
E, =up (poc + 4@”‘)?’%]{1 ) (21)
[, = D@ o)

H[i-Dyor] 7

where f, is the thermal dissipation function, 7, = 13/2o
is the thermal relaxation time and Pr is the Prandtl
number, respectively.

To determine the axial flow of heat in the present
system, we equate the total axial conduction plus con-
vection heat flux to an effective thermal conductivity
pocke multiplied by the axial temperature gradient 7.
Mathematically we have [8]

2 [, ,
by = - / ([ )R [T) rdr, (23)

where the subscript R indicates the real part of the
function in the bracket, k. is the effective thermal diffu-
sivity, and (), indicates the time average of the quantity
in the bracket, respectively.

With the aid of Egs. (7), (18), and (23), the effective
diffusivity can be written as the following form:

1o
ke =a ,lz /0 (gettr + gui)rdr (24)

o

where g; and g; indicate the real and imaginary part of
the g(r), u, and u; the real and imaginary part of the u(r),
respectively.

4. Results and discussion

The velocity function of transverse distribution u(r):
An example of the distribution of u(r) is shown in Fig. 3.
The spatial average over cross-sectional area of the u(r)
is shown in Fig. 4 with ¢, = \/wt,, where w1, is a non-
dimensional viscosity relaxation time. The (u,), and (u;),
both increase along with the increasing of the ¢,.

The temperature function of transverse distribution
g(r): An example of the distribution of g(r) is shown in
Fig. 5. The spatial average over cross-sectional area of
the g() is shown in Fig. 6 with ¢, = /o1, where wr, is a
non-dimensional thermal relaxation time. The (g,), is
negative with all value of the 7, and the (g;), is positive
except for small ¢,.

The effective thermal diffusivity k.: Eq. (24) indicates
that the effective thermal diffusivity k. is proportional to
AZ? and the k. increases with increasing o.

Let us define a non-dimensional effective thermal
diffusivity A =k./a. The calculated and experimental
results of 4 are shown in Fig. 7. The range of frequencies
used was 1-5 Hz.

The external magnetic field induces a magnetization
in the ferromagnetic fluid. In the magnetic equation of
state the magnetization is a function of both magnetic
field and temperature, so that the applied temperature

Az=0.02m AT =40K

14

u, (f=8H,)

sl Mr(f=3Hx)
ui(f=3Hx)

Uy (f: ZOHx) >

M’z’(f=8Hz)
-Mn 01 02 03 04 05 06 07 0z 083 4
riw

Fig. 3. Transverse distribution of u(r).
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Fig. 5. Transverse distribution of g(r).

gradient causes a spatial variation in the magnetization.
The variation induces a non-uniform magnetic field,
which is one of the driving forces causing the enhanced-
heat transfer [12]. The variation of dimensionless effec-
tive thermal diffusivity A with respect to magnetic
induction B, is shown in Fig. 8, where B, = yyH, is the
magnetic induction corresponding to the external
magnetic field H..
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Fig. 6. The spatial average over cross-sectional area of the g(r).

100
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Fig. 7. The relation between a non-dimensional effective ther-
mal diffusivity 4 and the frequency f.

The conditions of the experiment and fluid properties
are that Az =0.02 (m) and u, can be obtained by Eq.
(11); AT =40 K; B, = 0.0954 (T) and M, = 3.0 x 10*
(A/m) in Fig. 7; f = 1 Hz in Fig. §; k = 0.151 (W/m K);
po = 970 kg/m® ; ¢ = 1745 (J/kg K); k; = 31 (A/m K);
n =0.015 (kg/ms).

It is shown from Figs. 7 and 8 that A is larger than
one as long as H, and w are not equal to zero. It is
therefore illustrated that both oscillation and magnetic
are valuable to the heat transfer of ferromagnetic fluid,
and that the influence of oscillation in conjunction with
magnetic field on the enhanced-heat transfer for ferro-
magnetic fluid is greater than that of single oscillation or
magnetic field.
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Fig. 8. The variation of dimensionless effective thermal diffu-
sivity A with respect to magnetic induction B..

Comparing Fig. 7 with Fig. 8, we can see that the
affect of external magnetic field on A is not so great as
that of oscillating.

5. Conclusion

Enhanced-heat transfer of a ferromagnetic fluid in an
external magnetic field has been analyzed in this paper.
The theoretical expression for the effective thermal dif-
fusivity is derived. A comparison of the analytical results
with the experimental data shows a good agreement with
a tolerance of less than 10%. The study of this paper
shows that the dimensionless effective enhanced-thermal
diffusivity A of the longitudinal heat transport in the
ferromagnetic fluid depends on oscillating frequency f°
and external magnetic field H.. A increases along with the
increasing w or the increasing H.. Therefore, the heat
transfer of a ferromagnetic fluid can be controlled by the
presence of an acoustic field and a magnetic field.
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